Financial Data Analytics with Python

FINA 6333
Fermé
Contact principal
Northeastern University
Boston, Massachusetts, United States
Experiential Partnership Manager
(3)
6
Chronologie
  • janvier 7, 2025
    Début de Expérience
  • mai 1, 2025
    Fin de Expérience
Expérience
1/1 match de projet
Dates fixées par le Expérience
Compagnies privilégiées
N'importe où
Tout type de Compagnie
N'importe qu'elle industrie

Portée de Expérience

Catégories
Modélisation financière Visualisation des données Modélisation des données
Compétences
mathematics pandas (python package) data recording data manipulation trading strategy python (programming language) data wrangling portfolio optimization ipython (python package) financial data
Objectifs et capacités de Apprenant.es

This experience is designed for learners who are developing skills in Python programming specifically for financial data analytics. Participants will gain proficiency in using key Python libraries such as NumPy, Pandas, and Matplotlib to analyze financial data and implement financial models. Learners will be equipped to apply their knowledge to real-world financial scenarios, such as portfolio optimization and risk assessment, making them valuable contributors to industry projects.



McKinney Ch. 2 – Python Language

  • Basics, IPython, and Jupyter
  • Notebooks

McKinney Ch. 3 – Built-in Data

  • Structures, Functions, and Files
  • Introduction to Python

McKinney Ch. 4 – NumPy Basics IntermediatePython

McKinney Ch. 5 – Getting Started with pandas

  • Web Data, Log and Simple
  • Returns, and Portfolio Math
  • Data Manipulation with Pandas

McKinney Ch. 8 – Data Wrangling:

  • Join, Combine, and Reshape, Joining Data with Pandas

McKinney Ch. 10 – Data Aggregation

McKinney Ch. 11 – Time Series Earn 10,000 XP 2

  • Trading Strategies
  • Multi-Factor Models
  • Portfolio Optimization 5
  • Simulations 1


McKinney, Wes (2022). Python for Data Analysis. 3rd ed. O’Reilly Media, Inc.

Welch, Ivo (2022). Corporate Finance. 5th ed. Ivo Welch.

Apprenant.es

Apprenant.es
Finissant
Niveau Débutant, Intermédiaire, Avancé
100 Apprenant.es dans le programme
Projet
15 heures par Apprenant.e
Les Apprenant.es s'auto-attribuent
Équipes de 4
Résultats et livrables attendus
  • Python scripts for financial data analysis and visualization
  • Reports on portfolio performance and risk metrics
  • Algorithmic trading strategy simulations
  • Data-driven insights on options and futures pricing
  • Efficient frontier visualizations for portfolio optimization
Chronologie du projet
  • janvier 7, 2025
    Début de Expérience
  • mai 1, 2025
    Fin de Expérience

Exemples de projets

  • Develop a Python-based tool to analyze historical stock data and predict future trends
  • Create a multifactor portfolio model to optimize asset allocation
  • Simulate an algorithmic trading strategy and evaluate its performance
  • Analyze the value at risk (VaR) for a given investment portfolio
  • Visualize the efficient frontier for a set of financial assets
  • Assess the impact of different market conditions on options pricing
  • Generate a report on the risk-return profile of a diversified portfolio
  • Implement a Python script to automate financial data collection and analysis

Critères supplé mentaires pour Compagnie

Les Compagnies doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette Expérience:

  • Q1 - Texte court
    We would like to communicate via email. Please provide the best e-mail address to reach out!