Applied Machine Learning Bootcamp Project
Contact principal

Chronologie
-
juin 9, 2022Début de Expérience
-
juin 10, 2022Project Client Discovery Session 6-8pm MT
-
juin 17, 2022Team Formation 6-8pm MT
-
juin 24, 2022Project Client Discovery Session 6-8pm MT
-
juillet 1, 2022Client Demos 6-8pm MT
-
juillet 8, 2022Client Demos 6-8pm MT
-
juillet 22, 2022Fin de Expérience
Chronologie
-
juin 9, 2022Début de Expérience
-
juin 10, 2022Project Client Discovery Session 6-8pm MT
Meeting between students and company to confirm project scope, communications, and deliverables.
-
juin 17, 2022Team Formation 6-8pm MT
Project teams will be assigned to projects and clients will meet with their teams.
-
juin 24, 2022Project Client Discovery Session 6-8pm MT
Meeting between students and company to confirm project scope, communications, and deliverables.
-
juillet 1, 2022Client Demos 6-8pm MT
In progress work will be demoed and feedback solicited.
-
juillet 8, 2022Client Demos 6-8pm MT
In progress work will be demoed and feedback solicited.
-
juillet 22, 2022Final Project Presentations 6-9pm MT
Students will present their final project deliverable to their clients.
-
juillet 22, 2022Fin de Expérience
Portée de Expérience
Catégories
Apprentissage automatique Intelligence artificielleCompétences
machine learning data mining and analysis supervised and unsupervised learning algorithmsStudents from the SAIT's Applied Machine Learning Bootcamp and our Applied Product Management Bootcamp participate in a 78 hour interdisciplinary machine learning capstone project. This project culminates in the development of a machine learning model that predicts, detects, or forecasts an entity. The data for the use case could be images (computer vision), text (natural language processing), time series (multi-variate or univariate), or tablular data. The data format would be a folder of images or comma-separated values (CSVs) for text, time series, or tablular data. The client will need to:
1) Provide a clearly defined machine learning problem.
2) Explain how the client intends to use the solution.
3) Explain why this problem needs to be solved.
4) Provide a subject matter expert that can be a touch point for the student and answer questions related to the data and use case.
Apprenant.es
Students will produce a proof of concept, predictive machine learning model (i.e. a minimally viable product) that solves a client problem.
Chronologie du projet
-
juin 9, 2022Début de Expérience
-
juin 10, 2022Project Client Discovery Session 6-8pm MT
-
juin 17, 2022Team Formation 6-8pm MT
-
juin 24, 2022Project Client Discovery Session 6-8pm MT
-
juillet 1, 2022Client Demos 6-8pm MT
-
juillet 8, 2022Client Demos 6-8pm MT
-
juillet 22, 2022Fin de Expérience
Chronologie
-
juin 9, 2022Début de Expérience
-
juin 10, 2022Project Client Discovery Session 6-8pm MT
Meeting between students and company to confirm project scope, communications, and deliverables.
-
juin 17, 2022Team Formation 6-8pm MT
Project teams will be assigned to projects and clients will meet with their teams.
-
juin 24, 2022Project Client Discovery Session 6-8pm MT
Meeting between students and company to confirm project scope, communications, and deliverables.
-
juillet 1, 2022Client Demos 6-8pm MT
In progress work will be demoed and feedback solicited.
-
juillet 8, 2022Client Demos 6-8pm MT
In progress work will be demoed and feedback solicited.
-
juillet 22, 2022Final Project Presentations 6-9pm MT
Students will present their final project deliverable to their clients.
-
juillet 22, 2022Fin de Expérience
Exemples de projets
Examples of student-developed predictive machine learning models:
- Electricity consumption predictions or electricity load forecasting.
- Facial recognition.
- Solar power generation prediction.
- Oil production prediction.
- Carbon emission prediction.
- Heart attack prediction.
- Credit fraud detection.
- Predicting customers who are a potential flight risk (customer churn).
- Using MRI images to detect and predict patients who may have brain tumor.
- Using chest ray images of patients to predict patients who are at risk of getting covid.
Critères supplé mentaires pour Compagnie
Les Compagnies doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette Expérience:
Contact principal

Chronologie
-
juin 9, 2022Début de Expérience
-
juin 10, 2022Project Client Discovery Session 6-8pm MT
-
juin 17, 2022Team Formation 6-8pm MT
-
juin 24, 2022Project Client Discovery Session 6-8pm MT
-
juillet 1, 2022Client Demos 6-8pm MT
-
juillet 8, 2022Client Demos 6-8pm MT
-
juillet 22, 2022Fin de Expérience
Chronologie
-
juin 9, 2022Début de Expérience
-
juin 10, 2022Project Client Discovery Session 6-8pm MT
Meeting between students and company to confirm project scope, communications, and deliverables.
-
juin 17, 2022Team Formation 6-8pm MT
Project teams will be assigned to projects and clients will meet with their teams.
-
juin 24, 2022Project Client Discovery Session 6-8pm MT
Meeting between students and company to confirm project scope, communications, and deliverables.
-
juillet 1, 2022Client Demos 6-8pm MT
In progress work will be demoed and feedback solicited.
-
juillet 8, 2022Client Demos 6-8pm MT
In progress work will be demoed and feedback solicited.
-
juillet 22, 2022Final Project Presentations 6-9pm MT
Students will present their final project deliverable to their clients.
-
juillet 22, 2022Fin de Expérience